Bachelor-/ Master Thesis: »Data-Efficient Deep Learning Models in production«

Webseite Fraunhofer-Institut für Produktionstechnologie IPT
The Fraunhofer-Gesellschaft (www.fraunhofer.com) currently operates 76 institutes and research institutions throughout Germany and is the world’s leading applied research organization. Around 30,000 employees work with an annual research budget of 2.9 billion euros.
At the Fraunhofer IPT in Aachen, we work with more than 530 employees every day to make the production of the future more digital, more flexible and more sustainable. In the department production quality, we deal with the digitalization of production systems in order to increase quality, resilience and sustainability in production.
The use of deep learning in computer vision systems enables quality and efficiency gains in various applications in production (e. g., visual quality control). In this context, a typical challenge is the lack of representative training data, such as data of quality-critical anomalies. Augmentation strategies for the enrichment of datasets are usually designed manually and rely on simple image manipulations (e. g., geometry or color transformations). Within the scope of your thesis, you will investigate how optimization methods (e. g., Bayesian optimization) can be used to design efficient augmentation strategies for deep learning models in production use cases. The main potential lies in the integration of synthetic data from generative models and the use of domain knowledge.
What you will do
- Literature research on the topics of deep learning, generative image augmentation and global optimization
- Identification of requirements for the design of efficient augmentation strategies in production use cases
- Development and implementation of a method for optimizing augmentation strategies using synthetic data and/or domain knowledge
- Experimental validation based on production use cases in the field of computer vision (e. g., visual quality control)
- Preparation and documentation of results
What you bring to the table
- You are studying mechanical engineering, industrial engineering, computer science or a comparable subject
- You have first experience in Python
- You have basic knowledge of the theory and methods in machine- /deep learning
- A self-responsible and structured way of working
- Good language skills in German and/or English
What you can expect
- Scientific work on a current and practice-relevant topic
- Opportunity to expand and deepen your knowledge in the field of deep learning models
- Professional supervision and support for your thesis
- Participation in innovative research and industry projects with industry partners
- A state-of-the-art machine park equipped with edge cloud systems and 5G infrastructure
Questions according to this position will be answered by:
Maximilian Motz M.Sc.
Research assistant production quality
Phone: +49 241 8904-449
Um dich für diesen Job zu bewerben, besuche bitte s.fhg.de.